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Abstract. Integral High Gain Observer evaluation is performed for the
simultaneous estimation of the state variables and of an uncertain term
for a class of nonlinear systems. It is assumed that the measured output
presents additive noise. The proposed observer contains an integral-type
contribution of the measured output, which provides robustness against
noise. The observer is applied to a 1 degree of freedom (DOF) robot.
Experimental results in real time confirm the validity and good
performance of the observer.

1 Introduction

Thanks to the advances in the automatic control field, it has been possible to develop
methods and techniques to estimate the unknown variables governing the behaviour
of a dynamical system. A technique commonly employed for this purpose is based on
the reconstruction of the required variables by means of an observer, which is an
auxiliary dynamical system that attempts to estimate and reconstruct the state
variables by using the model of the original system, its input and output. The first
developments in estimation theory were obtained by Wiener [8] about temporal series
analysis, based on statistical assumptions related to the nature of the noise present in
the signal to be filtered and developing the so-called Wiener filter. A major thrust in
the development of observers came from the introduction of state-space methods by
R.E. Kalman in 1960 [7]). In 1963 D.G. Luenberger [7] showed that for observable
linear systems, an observer can be designed with the property that the observation
error, generated by the difference between the original system measured output and
the output estimated by the observer, goes exponentially to zero [2], [7]- In order to
implement a Luenberger observer it is necessary to know exactly the structure and the
parameters of the system under observation. In real-life systems, it is unlikely to
exactly known the above information then precluding the use of Luenberger observers
at least in its theoretical form. Several modifications to the original Luenberger
observer have been proposed to cope with the above problem [1], [2], [3], (4]

The integral observers proposed in [1] are particularly interesting for several reasons.
They are high gain designs in which the observer gain is tuned using a single
parameter. Moreover, their structure allows estimating certain classes of uncertainties

in the same way as it is showing in [6].
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Another interesting feature of integral observers is the fact that they are driven by the
integral of the system output whereas in standard observers the observer jg
drivendirectly by the system output. As a consequence, measurement noise is filtered
by the integral action then allowing using high gain in practice. Unfortunately, the
integral-type observers have been evaluated using only numerical simulations and ng
study of its implementation in real-time has not been conducted.

The aim of this work is to experimentally evaluate a class of Integral-type high gain
observers employing an electromechanical laboratory prototype consisting of a |}
DOF robot driven by a Direct Current (DC) motor. Two cases are considered. Firstly,
it is assumed that all the prototype parameters are known, secondly, an uncertainty on
the robot model is considered. The paper is presented as follows. Section 2 is devoted
to the integral-type high-gain observers. Application of the observer presented in
Section 2 to a | DOF robot is shown in Section 3. Section 5 presents the experimental
results for the two cases discussed above, namely, design of the observer with and
without uncertainties. The paper ends with some concluding remarks.

2 Integral High Gain Observers

The system studied in next section belongs to a class of partially known nonlinear
systems described by

X=L(X,U)+J(X) 0
Y=CX+d
where X eU” is the state vector, UeU™ is the control input vector, J(-) is a
nonlinear partially known vector, L () is a linear vector of its arguments, d ell isa
bounded measurement additive noise and Y €0 is the system output.

Now, consider the following assumptions
Al. d €U represents an external bounded additive noise

|d|<a, O<a <o .

A2. The system given by (1) is locally uniformly observable [5].

The following representation of (1) is proposed [1]

X,=CX +d

X=L(Xx,U)+J(X) )
J=0(x)

Y, =X,

A key observation about (2) is the fact that the uncertain term J is considered as a

new state and ®(X ) is a nonlinear unknown function that describes the dynamics of
J , and satisfies the following assumption
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A3. The dynamics G)(X ) of the uncertain term J is bounded, therefore

le(x)<B, B>o0.

Another important remark is that another state x, is added by integrating the system
output.
Then, the following dynamic system is an integral observer for (2) [1]

X=L(X,U)+(X)+k,(r,-7,) -
J=k3 (Yo"i;o)
Y, =X,
The observer gain matrix K =[k,,k,,k,] is given as
K=S5,'C". (4)

S, is a symmetric positive definite solution of the algebraic Lyapunov equation [5]

SB[A+%I)+[AT+%I)S, =C'C. (5)
Where
1, if j=i+l
/ ©)

C=[1 0-----0] and 4 ={ ,
0, otherwise

For some parameter 8 >0, determining the desired convergence speed. Coefficients

of S, are given by (S, )u =#, where s, are entries of a symmetric positive

definite matrix not depending on 8.

3 System Under Study

Let the single input-single output nonlinear system

X, =X,
x, =—ksin(x, )—ax, +bu (7
y=x+d

corresponding to a 1 DOF robot model affected by additive measurement noise d .



264 Rubén Garrido Moctezuma, et al.

3.1 Totally Known System

According to the results presented in Section 2, a new representation of the system (7)

is proposed. Set x,(¢)= Iy(‘r)df so that X, (t)=y(t)=x(t)+d . Then, the

following augmented system is obtained

(.i’o =x,+d

2 X =X
x, = —ksin(x,)—ax, +bu ®)
Yo = %o

(8) can be written in matrix form as follows

%] o 1 olx] [o 0 I
5 |=[0 0 I|fx |+{0[u+ 0 +(0|d
x| [0 0 0fx, ~(ksin(x)+ax,)| |0

(%)
v =[1 0 0][x,

Or in a compact form
Xx=Ax+Bu+®(x)+Ed

10
N (10)
Where
010 0 0 1
A=10 0 1|; B={0]|; ®(x)= 0 ; E=|0f; C=[1 0 0].
0 00 b —(ksin(x, )+ ax,) 0

Notice that £E=C" and the matrix 4 and C of the new augmented system (8) retain
the properties required in (6), as well as system (10) is observable.
An integral high-gain observer design for (10) results in

)

X =A%+ Bu+®(3)+K(y, - §,)
o = C%

Combining (10) and (11) the estimation error dynamics e=x—x is given as

é=%-2=(A-KC)e+®(x)-D(%)+Ed

(12)
é=A,e+d+C"d



Integral high gain observers: Theory and experimental evaluation 265

with K defined asin (4), 4, = A— KC and <b=¢(x)_¢(g) .

From (12) can be seen that the noise is not amplified by the observer gain. S, , S,
and A, matrices for (11) and (12) are given by

[ 1 1 1]
e 6’ o’
L, 3 30 36 ¢ -30 1 0
S, = o o "ol S, =136 50 20*|: 4 ,=[-36 0 1
1 3 6 e 20* ¢’ £’ 0 0
¢ o 7

Observer (11) for system (10) has the following structure
fo =% +30(x,-%,)
X, =% +30 (x, - %, ) (13)
X, = —ksin(%, )~ ax, + bu+6’ (x, - %,)

3.2 Uncertainty Estimation

Based on (7), several terms were grouped in a single term and considered as
uncertain, i.e. —(ksin(x )+ax,)=@(x,u) is the uncertainty to be estimated. Then,

system (8) can be rewritten as

(%, =x,+d
X =x,
14
i x, = @(x,u)+bu %)
(Jo = %o

Incorporating the uncertainty to the system as a new state the following augmented
system is obtained

(.i'o =x,+d
X, =X,

{ % =x,+bu (15)
x, =O(x,u)

Lyo=xo

Where ©(x,u4) is an unknown nonlinear function describing the dynamics of

x; =@(x,u) . The matrix form of (15) is given by
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%] [o 1 0 o][x,] [o] [ © ] [1]
X 0 0 0
%l 0 0 T Oyl +| (u+ +| |d
5| |00 o0 1fx|[b 0 | fo a6)
5] o 0 0 ofixj (0] [©(x)] (O]
)
yo=[1 0 0 0)[x, x, x x, ]
Which in a compact form is represented as
x=Ax+Bu+V¥ (x)+Ed
Yo =Cx (17)
Where
[0 1 0 0] 0] [ 0 ] (I
0 010 0 0 0
A= » B=|, [ ¥(x)= , E=| |5 C=[1 0 0 o0].
000 I s[F Y= 0 [ ]
[0 0 0 0] 0] _G)(x)J 0]

Again E=C" and the matrix 4 and C of the new augmented system (15) conserve
the properties required in (6). An integral high-gain observer for (17) is given by

£= A+ But KO = ) -
Yo =Cx
Using (17) and (18), the estimation error dynamics e=x—x is given as follows

¢=%~%=(A-KC)e+¥ (x)+Ed
é=Age+¥ (x)+C'd

(19)

With K defined as in (4). Matrices S, , S;' and 4, for (18) and (19) are given by

(111 1]
] 6 @’ 6* i )
| 2 3 4 40 60° 46° @° -4 1 0 0
& . 0’ @ 6' 6 o607 1467 116* 30*| |66 0 1 0
’ 1r 3 6 _10 ° 140 118* 108° 30° 4= -460° 0 0 |
e’ e? e’ 6° _94 30°  3p° 97_1 9* 000
| 4 10 20
6 8 8 @
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The observer (18) for the system (17) has the following structure

fz =

Xo =X, +40 (x, ~X,)

% =% +60% (x, - %) 20
il=ij+bu+49](xo—io) (

\.;’ =6 (xo _i'o)

4 Stability Analysis

Let the following error dynamics

é=A4e+Q(X,U,d) . Q1)
Where

Xo—’\'}o d
e=| X=X |; Q=| AL | 4,=(4-5;,'C’C).
J-J o(X)

And consider the following assumptions

A4. The function AL =L (X,U)-L (/\7,0) is bounded, i.e.
NERZ (#.u)<s. 8>0.

AS5. There exist two positive constants ¥ >0 and A >0 satisfying

"exp (Agt) e“ <yexp(-At)|e| .

A6. The vector function Q is bounded, so that
IQjsp, wu>o0.

Now, by solving (21), the following expression is obtained
e=exp(A,t)e(0)+I;exp{Aa (t-7)}Qdt . (22)

Considering assumptions A/ to A6 and taking norms for both sides of (22), the
following inequality is obtained

lefl < v exp (—lt)["e(O)“—-’;—.]+%l- : (23)

Taking the limit when ¢ — oo , the following bound on e is obtained
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le

Rial
<= (24)

Then, the estimation error remains bounded inside a ball of radius %, ie.

ce B, (0) .
2

S Experimental Results

In order to perform the experiments, a 1 DOF robot was employed and it is shown in
Fig. 1.

Fig. 1. Laboratory prototype employed in the experiments

A DC-motor drives the link through a belt and angular position is measured using an
optical encoder with 2500 pulses per tum. The encoder is directly attached to the
link. The motor is driven by a Copley Controls, model 413, power amplifier
configured in torque mode. Data acquisition is performed using the MultiQ 3 card
from Quanser Consulting with optical encoder inputs. These inputs multiply by 4 the
encoder resolution, then, the number of pulses per turn is 10000 . This output was
further scaled down by a factor of 10000 corresponding to one link turn. The card
also has 12 bits Digital to Analog converters with an output voltage range of *5v.
All the programming including the observers and data acquisition was implemented
using the MatLab-Simulink sofiware running under the WinCon program from
Quanser Consulting. The WinCon environment was used in the client and the server
running on different computers. The server is installed in a Pentium based computer
running at 200 Mhz. The client is allocated in another Pentium based computer

running at 350 Afhz . Sampling rate was set to SKhz .

Since lhc_: I DOF robot may get unstable in open loop, a loop was closed around the
robot using a relay programmed in the MatLab-Simulink environment. In this way,
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the robot perforn?ed a stable limit' cycle. The velocity estimated from the observers
was compared with another velocity estimate obtained from position measurements

through numerical differentiation. Parameters for model (7) are a=0.7, =28 and
k=12.04. ’

First Case: Robot without Uncertainty.

In this case the nonlinear terms in (7) are assumed known. Observer gain was set to
6 =120. Fig. 2 and Fig. 3 show position and velocity from the real system and from
the observer. It is noted that measured and estimated position do not show noticeable
differences. On the other hand, velocity estimates show some variation. The estimate
obtained from the integral observer shows a smoother behaviour com;;ared with the

velocity estimated obtained from numerical differentiation of the position
measurement, a technique of broad use in industrial servomotors

Second Case: Robot with Uncertainty.

In this case observer gain was set to 8 =80. Fig. 4 and Fig. 5 display the position and
velocity estimates. Behaviour in both states is similar to the behaviour observed in
Fig. 2 and Fig. 3. Fig. 6 show the real and estimated uncertainty, the later exhibiting a
smoother behaviour. The uncertainty estimate does not match perfectly the real
uncertainty, however, it should be pointed out that the so called real uncertainty is
also an estimate since it was computed using estimated parameters, position
measurements possibly contaminated with noise and velocity estimates obtained from
position measurements through numerical differentiation. Moreover, it is worth
remarking that the integral observer does not need any a priory information regarding
the uncertainty structure and parameters. Note also that even with very high observer
gains, measurement noise does not affect the estimates. In the particular case of

uncertainty estimation, the corresponding gain was 6* = 40960000 .
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Fig. 2. Position
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Fig. 6. Uncertainty

6 Conclusions

Few works regarding experimental evaluation of high gain observers have been
published in the open literature. In this work and for the first time, an Integral-type
high gain observer was experimentally evaluated. A feature of this observer is the fact
that it is driven by the integral of the system output, an approach contrasting with the
standard method in which the system output drives directly the observer. As a
consequence, measurement noise is highly attenuated then allowing using very high
observer gains. Performance of the integral observer was evaluated through
experiment using a 1 DOF robot. Two cases were studied. In the first one all the robot

parameters are assumed known. In the second case, the robot nonlinear term and
viscous friction were supposed unknown.

In both cases the observer showed good performance in spite of the high gain
employed.

Future work includes using the Integral observer in closed loop with a Proportional-
Derivative control law applied to the same prototype.
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